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Iris recognition technology recognizes a human based on his/her iris pattern. However, the accuracy of
the iris recognition technology depends on accurate iris localization. Localizing a pupil region in the
presence of other low-intensity regions, such as hairs, eyebrows, and eyelashes, is a challenging task. This
study proposes an iris localization technique that includes a localizing pupillary boundary in a sub-image
by using an integral projection function and two-dimensional shape properties (e.g., area, geometry, and
circularity). The limbic boundary is localized using gradients and an error distance transform, and the
boundary is regularized with active contours. Experimental results obtained from public databases show
the superiority of the proposed technique over contemporary methods.
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Biometric technology recognizes an individual based on
his/her physiological and/or physical traits, such as reti-
nas and irises, fingerprints, earprints, signatures, voice,
and face, and among others[1]. Among these traits,
the face, fingerprints, and voice have long been used
for human recognition. However, such traits change as
an individual ages and can be artificially duplicated as
well[2]. On the other hand, the iris is a unique, stable,
and non-invasive biometric. No two individuals have the
same iris pattern, including the left and right eyes of the
same individual[3]. The iris pattern remains stable over
the entire life of a subject, except for some minor changes
that occur in the early stages of life after birth[3,4].

A typical iris recognition system includes eye im-
age capture, iris segmentation, feature extraction, and
matching[2,3,5]. The term segmentation generally refers
to the extraction of features from an image[6,7]. Iris
segmentation plays a critical role in the overall recogni-
tion accuracy because the accuracy of the other modules
also depends on its performance. The iris segmentation
module localizes the pupillary (iris inner boundary/pupil
circle) and limbic (iris outer boundary/iris circle) bound-
aries and then detects and excludes any other superim-
posed noises, such as the eyelids, eyelashes, and/or specu-
lar reflections[1−3,5]. Researchers have proposed different
methods for iris segmentation, including histogram- and
thresholding-based techniques[2,5], gradients and edge
detectors[3,4], and genetic algorithms and fuzzy logic[8,9],
among others.

The current study focuses on localizing the pupillary
and limbic boundaries only (as in Refs. [1, 2, 5]) because
iris localization is considered to be the most challeng-
ing and time-consuming system module compared with
other system modules. Daugman[3] used an integro-
differential operator (IDO) to localize the iris in an eye
image. Similarly, Wildes[4] used the gradient edge image
and circular Hough transform (CHT) to localize the iris.
Given that both the IDO and CHT localize the iris by
using a circle approximation, the algorithms that use

these operators generally take longer compared to their
counterparts that use the histogram- and thresholding-
based techniques[1,2,5,10,11].

Khan et al.[2,5] used histogram-, gradients-, and
thresholding-based techniques to localize the pupil and
iris circles. Khan et al.[2] used eccentricity and Ibrahim
et al.[5] used the standard deviation of the position co-
ordinates of pixels in an object to accurately find the
pupil in a binary image. However, after converting the
input eye image into a binary level image, the resultant
image may contain multiple binary objects (a region of
white pixels is called an object) caused by low-intensity
regions, such as the eyebrows, eyelashes, hairs, and the
pupil region. Therefore, a small round object may have
smaller eccentricity and/or standard deviation than the
actual pupil object, causing an outage of the system.

Moreover, Khan et al.[2,5] were not able to accurately
determine the exact center coordinates of the iris cir-
cle. Instead, they were only able to determine the y-
coordinate and then assumed the x-coordinate of the
pupil circle as its x-coordinate. Moreover, they localized
the iris by using a circle approximation, which is not
circular in reality[12]. These drawbacks may affect the
overall system accuracy because a number of iris pixels
would be unconsidered or vice versa. Therefore, to re-
solve such issues, this letter proposes a robust and fast
iris localization technique.

Fig. 1. (a) Input eye image A(x, y) depicting different eye
parts; (b) preproccessed eye image B(x, y).
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In general, a human eye image [Fig. 1(a)] contains
dark (e.g., pupil, eyelashes, eyebrows, and hairs) and
bright (e.g., sclera and possibly the skin) regions. The
pupil is a low-intensity region, and thus, its localization
in the presence of other low-intensity regions is quite chal-
lenging. Nevertheless, these low-intensity regions can be
differentiated from one another using their geometrical
aspects because they have significantly different physi-
cal appearances. In addition, the pupil region is rela-
tively more compact than the other low-intensity regions.
Following the arguments above, this study proposes a re-
liable technique that can demarcate the pupillary bound-
ary by using a circle approximation. The proposed tech-
nique is comprised of two-dimensional (2D) shape proper-
ties (e.g., circularity, area, and geometry) and eye image
gray level statistics that can locate the pupil precisely.

Circularity (C) is a measure of compactness of an ob-
ject, and a circle is the most compact shape. The C of
an object can be defined as

C =
P 2

4πã
, (1)

where ã and P represent the area and perimeter of an ob-
ject, respectively. The C of a perfect circle is always one
and increases as the shape becomes complicated. The
P of a binary image is a set of pixels that belongs to
an object and has at least one neighbor that belongs to
the background (a region of zeros). The total number of
pixels represents the P of an object. However, its preci-
sion depends on the methodology used for detecting the
boundary pixels, for instance, a four- or an eight-adjacent
procedure[13].

The area (ã) of an object represents the number of pix-
els in an object calculated as

ã =

mb∑

x=1

nb∑

y=1

Ib(x, y), (2)

where mb and nb represent the number of rows and
columns of the binary image Ib(x, y) that contains the
target object[14].

In this letter, the specular reflections[3] in the input eye
image A(x, y) were suppressed prior to the actual iris lo-
calization process. The suppression of the specular reflec-
tions includes complementing the image A(x, y), filling
the holes (a region of zeros surrounded by ones) in the re-
sultant image with a morphological operator ‘imf ill ’[15],
passing the resultant image through a median filter (win-
dow size (5×5)) to calm down any boundary artifacts and
rapid gray level variations, and finally re-complementing
the resultant image to obtain the preprocessed eye image
B(x, y). Figure 1(b) shows the preprocessed eye image
B(x, y).

The vertical [fv(x)] and horizontal [fh(y)] integral pro-
jection functions[16], which were used to mark a Seed-
location (xs, ys) in the iris/pupil region in the image
B(x, y), can be expressed as

fv =
1

n

n∑

i=1

I(x, yi), x = 1, 2, 3, · · · ,m, (3)

fh =
1

m

m∑

i=1

I(xi, y), y = 1, 2, 3, · · · , n, (4)

where n andm represent the number of columns and rows
of B(x, y), respectively. Then, the (xs, ys)-coordinates
were extracted as

xs=[xb∈{x=1, 2, 3, · · · ,m} such that fv(xo) is maximum].
(5)

ys=[yb∈{y=1, 2, 3, · · · ,m} such that fh(yo) is maximum].
(6)

Figure 2(a) shows the fv(x) and fh(y) curves along
with the seed-location (xs, ys). Figure 2(b) shows the re-
gion of interest (ROI) ROI(x, y), which was centered at
(xs, ys) and each of its side was empirically set to 60%
of the width of B(x, y). Hereafter, ROI(x, y) is used as
the input image for further processing unless specified
otherwise.

Let (ĥ) represent the histogram (Fig. 3) of ROI(x, y).
Generally, the histogram of a human eye image comprises
three significant parts, including a lower part that usually
represents the low-intensity regions mentioned earlier, a
middle part that represents the iris region, and an upper
part that represents the bright regions, such as the sclera
and the skin. Thus, only the lower half-gray level range
(γ = [0 : 127]) was considered and the upper range was
ignored. Next, the γ was bisected into two sub-ranges,
γLow and γHigh, as

γLow = (0 ∼ β), (7)

γHigh = (β + 1 ∼ 2β), (8)

where β is the lower gray level saturated limit that
represents the bottom 1% of all the gray values in im-
age B(x, y). More details on the calculations can be seen

Fig. 2. (a) Preprocessed eye image B(x, y) showing the ver-
tical fv(x) and the horizontal fh(y) integral projection func-
tions and the seed-location (xs, ys). (b) ROI-image ROI(x, y)
marked in the image B(x, y); white-dot in the pupil region
represents the seed-location (xs, ys).

Fig. 3. Histogram ĥ of the ROI-image ROI(x, y).
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in Ref. [17]. The gray level values (a1) and (a2) that
correspond to the maximum frequencies in the lower half

of ĥ were then extracted as

a1 = [ g1 ∈ γLow such that ĥ1(g1) is maximum ] ,

a2 = [ g2 ∈ γHigh such that ĥ2(g2) is maximum ] ,

with ĥ1 = h(γLow) and ĥ2 = h(γHigh). Then, the fol-
lowing steps were used to localize the circular pupillary
boundary in ROI(x, y):

Step 1 Assign the gray value a1 to an adaptive thresh-
old (Tad), i.e., (Tad = a1).

Step 2 Convert ROI(x, y) to a binary level image
BW(x, y) as

BW(x, y) =

{
1 if [(Tad − ε) 6 ROI(x, y) 6 (Tad + ε)]
0 otherwise

.

(9)
In an ideal eye image, the pupil region has uniform

gray level intensity, which, however, may not be true un-
der non-ideal conditions because of the non-uniformity
of illumination. Therefore, empirically set ε to 6 to com-
pensate for any possible gray level variations in the pupil
region. After which, perform a morphological open [18]

operation on BW(x, y) by using a structuring element
with radius of three. This operation deletes any spurious
pixels and isolates the loosely connected binary objects.
Next, search any non-zero pixel in BW(x, y). If no non-
zero pixels are found, then assign the gray value a2 to
Tad (i.e., Tad = a2) and repeat the current step. Other-
wise, use a four-adjacent procedure[13] to detect and then
invert any gray level values of holes found in BW(x, y).

As mentioned above, low-intensity regions may cause
multiple objects in BW(x, y). Thus, localizing the pupil-
lary boundary by using the eccentricity (as in Ref. [2]) or
standard deviation (as in Ref. [5]) alone may not be fea-
sible unless they are supplemented by other supporting
parameters. Such issue was resolved using the 2D-shape
properties to localize the pupillary boundary by using
a circle approximation (xp, yp, rp), where (xp, yp) and
rp are the center and radius of the pupil circle, respec-
tively. Initialize iteration j to one and follow the suc-
ceeding steps to select a true pupil object in BW(x, y).

Step 3 Use the four-adjacent procedure to detect the
jth object in BW(x, y). Compute its area ã(j), circular-
ity C(j), and boundary coordinates (Xj , Yj), and then
extract the minima (x1, y1) and maxima (x2, y2) values
of the x- and y-coordinates as

(x1, y1) = [min(X), min(Y )], (10)

(x2, y2) = [max(X), max(Y )]. (11)

Calculate the coarse length L and width W as

(L,W )=[max(x2 − x1, y2 − y1),min(x2 − x1, y2 − y1)].
(12)

Step 4 If W is less than 60% of L, then the binary ob-
ject is akin to a strip with a length much greater than its
width. This result occurs when the eyebrows, eyeglass
frames, or hair-bunches create an object. In this case,
increment j by one and repeat Step 3 for the next ob-
ject. Otherwise, calculate the coarse center (xj , yj) and

radius (rj) as

(xj , yj) =
[ (x1 + x2)

2
,
(y1 + y2)

2

]
, (13)

rj =
1

2

[ (x2 − x1)

2
+

(y2 − y1)

2

]
. (14)

Then, update the pupil circle vector (ℜ) as ℜ=[xj yj rj ].
Step 5 Calculate the following conditions:

t0 = [C(j − 1) + 0.2] 6 C(j)&C(j) < 1.5,

t1 = C(j) 6 [C(j − 1) − 0.2],

t2 = ã(j) > ã(j − 1),

Then, perform the following tests:

if
[
(t0 == 1 & t2 == 1)|(t1 == 1 & t2 == 1)

]
then

C(j − 1) = C(j) ; update the previous value of the cir-
cularity.
ã(j−1) = ã(j); update the previous value of the area.
ℜ(j−1) = ℜ(j); update the previous value of the pupil

circle vector.
else
ℜ(j) = ℜ(j − 1); update the current value of the pupil

circle vector by using a previous value.
end
In the pseudo code lines above, C(j − 1), ã(j − 1), and
ℜ(j − 1) hold the previous values of circularity, area,
and pupil circle vector, respectively, and the constant-
parameter 0.2 in conditions t0 and t1 is set empirically.
The constant parameter provides an offset in the pre-
vious value of circularity, consequently preventing any
rapid switching between the previous and current param-
eters of the binary object. Similarly, the 1.5 in condition
t0 is also set empirically. As stated above, the circular-
ity of a perfect circle is always one and increases as the
shape becomes complicated. Therefore, this parameter
confines the object circularity range to window (1–1.5).

Increment j by one and repeat the entire process from
Step 3 until all the other objects are scanned. However,
if no pupil object exists in BW(x, y) and the current
value of Tad is a1, then repeat the entire process from
Step 2 for Tad = a2. Otherwise, obtain the center and
radius parameters of the pupillary boundary as follows:
(xp, yp) = [ℜj(1),ℜj(2)] and rp = ℜj(3).

As can be seen in Fig. 2(b), the ROI-image ROI(x, y)
does not include the low-intensity regions, such as the
eyebrows, and therefore, the resultant binary image
BW(x, y) would contain only a single binary object that
is the pupil object. In this case, the pupillary boundary is
extracted without issue of multiple-objects. However, we
intentionally converted the entire preprocessed eye im-
age B(x, y) into a binary image BW(x, y) to show the
effectiveness of the proposed technique and defend our
claim on the multiple-object issue. The proposed tech-
nique successfully detected the actual pupil object in the
presence of a fake object caused by the eyebrows (Fig.
4(a)). Figure 4(b) shows the pupillary boundary marked
by the pupil circle (xp, yp, rp).

Limbic boundary localization poses more difficulties
than the pupillary boundary because of the low contrast
between the iris and sclera regions and the eyelids and
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eyelashes occlusions. Thus, to resolve such issues, this
letter proposes an effective limbic boundary localization
scheme that includes the following steps:

Step 1 Assume the pupil center (xp, yp) as the origin
of the image and mark two secure conical sectors, s1=
(–30◦ to 30◦) and s2= (150◦ to 210◦), in the preprocessed
eye image B(x, y). These regions are normally free from
noises, such as the eyelids and eyelashes. Then, initialize
a radial vector (r) and an angular vector (θ) as

r =
{
1.5rP, 1.5rP + 1, 1.5rP + 2, · · · , 3.5rp

}
, (15)

θ =
{
0 : π/180 : π

}
. (16)

Step 2 Use Eq. (17) to extract the one-dimensional
(1D) gray level profiles (Ψ1) along the radial-segments
in sector s1. Assume that the lower and upper ends of
each radial segment are located at 1.5rp and 3.5rp, with
respect to (xp, yp), respectively, where rp is the radius of
the pupil circle.

Ψ1(u, t) = B(x(t) y(t)), (17)

where x(t) = xp + r(t) cos[θ(u)] and y(t) = yp +
r(t) sin[θ(u)], with u = 1, 2, 3, · · · , m̃ and t =
1, 2, 3, · · · , ñ. m̃ represents the number of 1D gray
level profiles in sector s1 and ñ is the size of vector
r, which is the number of points considered along each
radial-segment. Use a first-order difference equation[13]

to calculate an absolute radial gradient (∆1) as

∆1(t, u) = |Ψ1(u, t+ 1) − ψ1(u, t)|,

for u = 1, 2, · · · , m̃− 1 and t = 1, 2, · · · , ñ− 1. (18)

Step 3 Calculate a distance matrix (D1) of points with
maximum gradient in s1 around the limbic boundary
with respect to (xp, yp) as

D1(u) = [r(t0) such that ∆1(t, u) is maximum at t = t0]

For u = 1, 2, · · · , m̃ and t = 1, 2, 3, · · · , ñ. (19)

Step 4 Calculate an error distance transform (χ1) (Fig.
(b)) by taking the absolute difference of each entry with
all the other entries in D1 as

χ1(i, j) = |D1(i) −D1(j)|, i, j = 1, 2, 3, · · · , n2. (20)

Step 5 Delete the false points in D1, i.e., a point is
deleted if it has 50% of its error-distances (in χ1) greater
than an empirical value of 5, and it is kept as a true point
if otherwise (Figs. 5(a) and 5(b)). The resultant array

is
⌣

D1. Similarly, calculate a distance matrix
⌣

D2 for the
points in sector s2 and calculate the radius (ri) for the
circular limbic boundary as

ri = 0.5

{
1

K 1

K1∑

i=1

D̆1(i) +
1

K 2

K2∑

j=1

D̆2(j)

}
, (21)

where K1 and K2 represent the number of the true

points in
⌣

D1 and
⌣

D2, respectively. Figure 5(c) shows
the limbic boundary marked with a circle approximation
(xi, yi, ri). The iris circle has radius ri and (xp, yp) as

its center (xi, yi).
Figures 4(c) and 5(c) show the pupillary and limbic

boundaries marked with circle approximation, which, in
reality, are not circular[12] and require further regular-
ization. Thus, a combination of the radial gradients and
Fourier series was used to solve such issue[12]. Firstly,
mark two circular bands in the pre-processed eye image
B(x, y) such that each band has a width of 11 pixels
and is centered at the pupil center (xp, yp). The inner
and outer bands contain the actual pupillary and limbic
boundaries, respectively. Next, localize N points with
maximum gradients in each band by using a similar ap-
proach as adopted above to localize points around the
limbic boundary in sector s1. N is set to be the perime-
ter of the concerned circular boundary. For example,
N = 2πrp for the pupillary boundary, with rp as the
pupil circle radius.

Let d1 and d2 represent the radial distances of the
points along the pupillary and limbic boundaries with
respect to (xp, yp), respectively. d1 and d2 were
passed through the median filter (3 × 3 window size)
to calm down any rapid variations in the radial dis-
tances of the boundary points in each band. The re-
sultant arrays are d̄1 and d̄2. Finally, the resultant
arrays were filtered using the Fourier series (active con-
tours, as suggested in Ref. [12]). For demostration
purposes, M was set to 25 for the optimal pupillary

Fig. 4. (a) Pupil object marked in image BW(x, y) that shows
multiple objects; only two objects in this case. (b) Pupillary
boundary marked with the pupil circle (xp, yp, rp) in the pre-
processed eye image B(x, y).

Fig. 5. (a) Preprocessed eye image B(x, y) showing the left
and right conical sectors (i.e., S1 and S2). Some false-points
are shown in the white ellipse in the sector S2. (b) Error dis-
tance transform χ1. (c) Limbic boundary marked with the
iris circle (xi, yi, ri).
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boundary. Then, M coefficients for the pupillary bound-
ary were obtained as

Cw =

N−1∑

z=0

d1(z) exp(−2πiwz/N), w = 0, 1, 2, · · · ,M − 1.

(22)
The coefficients (Cw, w = 0, 1, 2, · · · , M − 1) were
then plugged into the following expression to obtain a
smooth and close pupillary boundary whose resolution is
controlled by M :

d̂1(s) =
1

N

M−1∑

q=0

Cq exp(2πiqs/N), s = 0, 1, 2, · · · , N − 1.

(23)

Similarly,
⌢

d2(s) for the limbic boundary was obtained
by taking M to be equal to 20 for the optimal bound-
ary fidelity. Figure 6(a) shows the points with maximum
gradients along the pupillary and limbic boundaries af-
ter the median filtering process. Figure 6(b) shows the
pupillary and limbic boundaries filtered using the Fourier
series. The proposed technique was tested using Mat-
lab version 7.1 installed on a PC with 2.33 GHz CPU
and 1.5 GB RAM. The performance of the proposed
technique was evaluated using the public iris databases
MMU V1.0[19] and CASIA-Iris-Lamp, which is a subset
of CASIA-IrisV3[20]. For accurate results, the accuracy
rate (ξ) suggested in Ref. [11] was reused in Ref. [5]. ξ
is defined as

ξ =

(
N1

Nt
× 100

)
, (24)

where N1 represents the number of correctly localized
irises and Nt is the total number of eye images used in
the experiment. Moreover, ξ depends on the accuracy
error (ϕerr), which is defined as

ϕerr =
|w1 − w2|

w1
× 100, (25)

where w1 and w2 represent the number of actual and
detected iris pixels, respectively. The detected iris pixels
are counted using the row-major scanning technique. A
localized iris is considered accurate if δerr is less than
10% , and false if otherwise.

In the first setup, the proposed algorithm was tested
on CASIA-Iris-Lamp[20], which contains 16 212 eye im-
ages from 411 subjects and has an image resolution of
640× 480 (pixel). CASIA-Iris-Lamp offers noise, such as
specular reflections, eyebrows, eyelashes, hairs, eyelids,
non-uniform illuminations, and off-axis eye images. For
better performance, the specular reflections were sup-
pressed at the start of the test. Firstly, 4 080 eye images
were used in the experiment. Table 1 shows the accu-
racy comparison of the proposed technique with some
contemporary techniques[3,5,21,22]. Similarly, Fig. 7(a)
shows some accurate irises that were localized using the
proposed technique.

In the second setup, the proposed technique was tested
on the entire MMU V1.0 iris database[19]. MMU V1.0
iris database contains 450 iris images collected from
45 individuals with each image having a resolution of
320 × 240 (pixel). Iris images from MMU V1.0 iris

Table 1. Comparison with Other Methods for
CASIA-IrisV3-Lamp Database (Results Are Taken

from the Published Work)

Method Accuracy (%)

Masek[21] 79.02a

Ibrahim et al.[5] 98.28

Koh et al.[22] 99.00

Daugman[3] 96.00b

Proposed 99.20

a: results are taken from Ref. [5]; b: results are taken from
Ref. [22].

Table 2. Comparison with Other Methods for MMU
V1.0 Database (Results Are Taken from the

Published Work)

Method Accuracy(%)

Khan et al.[2] 98.22

Masek[21] 83.92a

Dey et al.[11] 98.41a

Basit et al.[23] 98.10

Ma et al.[24] 91.02a

Proposed 99.25

a: results are taken from Ref. [2].

database contain specular reflections, eyelids, eyelashes,
contact lenses, and off-axis eye images. Specular reflec-
tions were suppressed prior to the actual iris localization
process. Table 2 shows the accuracy comparison re-
sults of the proposed algorithm with some contemporary
techniques[2,11,21,23,24]. Figure 7(b) shows some irises
that have been localized correctly using the proposed
technique.

For the temporal analysis, the computational cost
of the proposed technique was analyzed using built-in
‘prof ile’ [15] facility of Matlab. In this regard, 1 000 ran-
domly selected eye images were extracted from the two
iris databases, and the average time per eye image was
estimated. On average, it took 0.2- and 0.8-s time for the
MMU V1.0 and CASIA-Iris-Lamp, respectively. Thus,
it collectively takes 0.5 sec per eye image for the two
iris databases. The proposed technique was evaluated in
the Matlab platform, which is a higher-level program-
ming package that runs on general-purpose operating
systems[25], such as Windows XP. Its built-in functions
contain implicit redundancy. Therefore, any Matlab pro-
gram usually takes longer compared with other low-level
programming languages, such as C/C++. However, if
the proposed algorithm is ported onto specialized media,
such as Digital signal processors, FPGAs, and CPLDs[26],
then it will localize an iris within a fraction of a second.

In conclusion, the key points and achievements of this
study are summarized as follows. The proposed tech-
nique extracts a sub-image using image integral projec-
tion functions to speed up the iris localization process.
Then, the proposed technique converts the sub-image
to a binary level image by using a bi-valued adaptive
threshold based on the histogram and image gray level
statistics. The proposed technique utilizes 2D-shape
properties to demarcate the pupillary boundary in the
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Fig. 6. (a) Preprocessed eye image B(x, y) showing points
(having maximum gradients) marked along the pupillary and
limbic boundaries after the median filtering process. (b) Orig-
inal eye image showing the pupillary and limbic boundaries
regularized with the Fourier series. Eye image is taken from
the MMU V1.0[19].

Fig. 7. (a) Some randomly selected accurate iris localizations

for the CASIA-Iris V3-Lamp[20]. (b) Some randomly selected

accurate iris localizations for the MIMU V1[19].

binary image. Notably, the proposed technique local-
izes the pupil region robustly in the presence of other
low-intensity regions, such as eyelashes, eyebrows, and
hairs, and it localizes the circular limbic boundary by
using a combination of the gradients and error distance
transform. Moreover, the proposed technique regularizes
the inner and outer boundaries of the iris by using the
Fourier series, which compensates for any offset between
the pupil and iris centers, as well as the non-circular
nature of the iris boundaries. Experimental results show
the superiority of the proposed algorithm over contem-
porary techniques.

This work was supported by in-house PhD Program of
COMSATS Institute of Information Technology, Islam-
abad Campus Pakistan. We would also like to thank the
Malaysia Multimedia University and Chinese Academy
of Sciences for providing us with free access to their iris
databases.
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